Local Low-Dose Lovastatin Delivery Improves the Bone-Healing Defect Caused by Nf1 Loss of Function in Osteoblasts

نویسندگان

  • Weixi Wang
  • Jeffry S Nyman
  • Heather E Moss
  • Gloria Gutierrez
  • Gregory R Mundy
  • Xiangli Yang
  • Florent Elefteriou
چکیده

Postfracture tibial nonunion (pseudoarthrosis) leads to lifelong disability in patients with neurofibromatosis type I (NF1), a disorder caused by mutations in the NF1 gene. To determine the contribution of NF1 in bone healing, we assessed bone healing in the Nf1(ob) (-/-) conditional mouse model lacking Nf1 specifically in osteoblasts. A closed distal tibia fracture protocol and a longitudinal study design were used. During the 21- to 28-day postfracture period, callus volume, as expected, decreased in wild-type but not in Nf1(ob) (-/-) mice, suggesting delayed healing. At these two time points, bone volume (BV/TV) and volumetric bone mineral density (vBMD) measured by 3D micro-computed tomography were decreased in Nf1(ob) (-/-) callus-bridging cortices and trabecular compartments compared with wild-type controls. Histomorphometric analyses revealed the presence of cartilaginous remnants, a high amount of osteoid, and increased osteoclast surfaces in Nf1(ob) (-/-) calluses 21 days after fracture, which was accompanied by increased expression of osteopontin, Rankl, and Tgfbeta. Callus strength measured by three-point bending 28 days after fracture was reduced in Nf1(ob) (-/-) versus wild-type calluses. Importantly, from a clinical point of view, this defect of callus maturation and strength could be ameliorated by local delivery of low-dose lovastatin microparticles, which successfully decreased osteoid volume and cartilaginous remnant number and increased callus BV/TV and strength in mutant mice. These results thus indicate that the dysfunctions caused by loss of Nf1 in osteoblasts impair callus maturation and weaken callus mechanical properties and suggest that local delivery of low-dose lovastatin may improve bone healing in NF1 patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling neurofibromatosis type 1 tibial dysplasia and its treatment with lovastatin

BACKGROUND Bowing and/or pseudarthrosis of the tibia is a known severe complication of neurofibromatosis type 1 (NF1). Mice with conditionally inactivated neurofibromin (Nf1) in the developing limbs and cranium (Nf1Prx1) show bowing of the tibia caused by decreased bone mineralisation and increased bone vascularisation. However, in contrast to NF1 patients, spontaneous fractures do not occur in...

متن کامل

Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I.

Mutations in NF1 cause neurofibromatosis type I (NF1), a disorder characterized, among other clinical manifestations, by generalized and focal bony lesions. Dystrophic scoliosis and tibial pseudoarthrosis are the most severe skeletal manifestations for which treatment is not satisfactory, emphasizing the dearth of knowledge related to the biology of NF1 in bone cells. Using reporter mice, we re...

متن کامل

Various Dosages of BMP-2 for Management of Massive Bone Defect in Sprague Dawley Rat

Introduction: The use of BMP-2 plays an important role in the treatment of extensive bone defect. However, data about the optimal dosage of BMP-2 in the massive bone defect cases is rare. Material and Method: Twenty-five SD rats were randomly divided into a control group ofhydroxyapatite (HA) alone (Group I), HA+BMP-2 1µg/mL (Group II), HA+BMP-2 5 ug/mL (Group III), HA+BMP-2 10 µg/mL (Gro...

متن کامل

The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1

Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced b...

متن کامل

Controlled-release of tetracycline and lovastatin by poly(d,l-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs

Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010